數學 & ECON代寫 | 33189 LC Mathematical Methods for Economics Assignment

<标题>本次ECON經濟學代寫的主要內容是經濟學中的LC數學模型方法

作業占模塊評估的50%。它被標記為100。

<标题>建議您將數學正確性和解釋質量視為同等重要。 “說明質量”在“ MFE評估標準”文件中的“一般課程信息”中進行了討論。

每個問題都帶有相等數量的分數。除非另有說明(Q3),否則每個子問題(a),(b),(c)等均帶有相同數量的該問題的分數。

<标题>發布時間:3月1日星期一(第5周)。

在Canvas上提交,截止日期為:3月22日星期一中午12點(第8周)。

<标题>提出問題的禁運:您可以在3月15日(星期一)下午5點之前問我有關床單的問題,但不要在那之后問(即上交之前的最后一周)。關鍵是這些互動是出于學習和教學的目的。新知識需要時間來吸收。如果您完全陷入困境,我將提供足夠的幫助以使您感動。

標記和反饋:4月19日星期一。
知識方面

<标题>請查閱附近的MME評估標準,以獲取關于我以及(可能)第二年和最后幾年尋找的數學和定量方法標記的摘要。

如果您要教另一個低于您的水平的學生,請說明您應該采取的方式。根據您達到此標準的程度來判斷“解釋質量”。

o讓您的學生盡可能清楚地了解事情,但不要重復他們可能已經知道的事情。

<标题>o注意清楚明了,措辭以及“獲得正確答案”。不要只是向他們扔代數。

o用正確,簡潔的英語句子解釋您的工作,并忽略與所提問題無關的內容。

o如果您的答案似乎太短/太長,則可能說明的解釋太少/太多,在這種情況下,授予的分數將令人失望/令人失望。

1個

o《問題與答案》和《課堂答案》中的答案提供了有用的指南。

o這些要求的原因是該模塊強調交流以及數學技能。如果您無法與其他人交流,那么了解數學就沒什么用了。

關于其中的某些事情,您應該做出自己的判斷,而不是問我們要做什么“正確”的事情。做出這樣的判斷是標記您的內容的一部分。像您未來的職業生涯一樣,您將獲得一定程度的自立,這將歸功于他們的功勞。

使用提示。

物理方面

<标题>請以pdf文件格式提交您的答案。

請只提供一個pdf文件。您可以將通過電話或

掃描儀和鍵入的文本。

為了清晰起見,任何文字照片都應全幅顯示,而不是從角度看。提交前,請先檢查其可讀性。

為了我們雙方的緣故,請清楚地寫下您的答案,并使它們易于閱讀和標記。理想情況下,請先準備一個粗糙的版本,然后提交一份公平的副本。如果您的答案占幾頁,請尋找一個更簡潔的版本,這可能會獲得更多的分數。

請包括頁碼和問題編號。

不符合這些要求的答案將根據如何處罰

他們為標記創建了很多困難。

<标题>即使在截止日期之前開始提交,在截止日期之后收到的答案也算作遲到,并每天被罰款5分。為什么不在截止日期之前提交一兩天呢?

2個

問題1。

最后,實際問題

<标题>假設??:R3→R,其中??由??(??1,??2,??3)≡3??1-2??3+??1(2??2-1)+(??1+??2-??3)2 -??4定義。

(a)證明??是向量的二次函數。

<标题>(b)找出critical的臨界點???。

(c)確定??是否具有唯一的全局最小值或唯一的全局最大值,或都不具有???。

問題2。

通過(當然)適當的解釋,找到關于點?2?的函數f(x)= x3 x2的二階泰勒多項式(泰勒向量二次方)。有條理。

1 2??3??
<标题> (a)[此問題分數的50%。]使用數值方法,在

問題3。

電子表格,以查找功能的關鍵點
<标题> ??:R2→R,其中??(??,??)≡??????(?3??)+??????(???)+5??2??2。

121212

系統地解釋您答案的代數方面,并整潔地呈現數值計算:例如,從電子表格輸出中進行編輯。

暗示。參見第3周的在線技能(幻燈片),第31頁起。電子表格中合適的列標題是出現在p上的那些。 34:

Iter x1 x2 f g1 g2 H11 H12 H21 H22 DET h1 h2

(DET是Hessian的決定因素。)請注意,不必為后三列制定完整的代數公式,因為它們都可以用前幾列來表示。

<标题>(b)[此問題分數的25%。]在找到的要點上是否存在嚴格的局部最小值或最大值?解釋。

<标题>(c)[此問題分數的25%。]找到至少一個其他關鍵點,

Assessment:

<标题>33189 LC Mathematical Methods for Economics MME 50% Assignment – Questions

Organizational Aspects

The Assignment counts for 50% of the module assessment. It is marked out of 100.

You are advised to think of mathematical correctness, and quality of explanation, as equally important. ‘Quality of explanation’ is discussed in the document MFE Assessment Criteria, in General Course Information.

Every question carries an equal number of marks. Unless otherwise stated (Q3), every sub-question (a), (b), (c) and so on carries an equal number of the marks for that question.

Published: Mon 1 March (in Week 5).

Submit on Canvas by: 12 noon, Mon 22 March (in Week 8).

<标题>Question-asking embargo: You can ask me questions about the sheet till 5 pm, Mon 15 March, but not after that (i.e. not in the last week before hand-in). The point is that these interactions are for the purpose of learning and teaching. New knowledge takes time to absorb. I will provide enough help to get you moving, if you’re completely stuck.

Marks and Feedback by: Mon 19 April.
<标题> Intellectual Aspects

  • Consult MME Assessment Criteria nearby, for a summary of what I and (probably) other markers of mathematical and quantitative methods in the second and final years are looking for.
  • Explain in the way you should, if you were to teach another student just below your level. ‘Quality of explanation’ is judged on how well you meet this criterion.

<标题>o Make things as clear as possible to your pupil student, but don’t repeat things they probably already know.

o Pay attention to clarity and wording as well as to ‘getting the right answer’. Don’t just throw algebra at them.

o Explain what you’re doing, in proper, concise, English sentences, omitting material irrelevant to the question posed.

<标题>o Ifyouranswersseemdisproportionatelyshort/long,perhapsyouareproviding too little/much explanation, in which case the marks awarded will be disappointing/disappointing.

1

<标题>o The answers in Problems and Answers and Class Answers provide a useful guide.

o The reason for these requests is that the module stresses communication as well as mathematical skill. It is of little use knowing the maths, if you can’t communicate it to someone else.

  • About some of these things, you should make your own judgement, rather than asking us what is the ‘right’ thing to do. Making such judgements is part of what you are marked on. Credit will be given for a reasonable amount of self-reliance, as it will in your future career.
  • Use the Hints.

    Physical Aspects

  • Please submit your answers in a pdf file.
  • One pdf file only, please. You may mix in the same file pictures taken by phone or

    scanner, and typed text.

  • In the interests of legibility, any photographs of text should be full-on, not from an angle. Please check for legibility before submitting.
  • For both our sakes, please write your answers clearly and make them easy for us to read and mark. Ideally, prepare a rough version first, but submit a fair copy. If your answer occupies several pages, look for a more concise version, that will probably gain more marks.
  • Please include page numbers and question numbers.
  • Answers that do not conform to these requests will be penalized according to how

    much difficulty they create for the markers.

  • Answers received after the deadline, even if submission began before the deadline, count as late, and are subject to the usual 5-marks-per-day penalty. Why not submit a day or two before the deadline?

2

QUESTION 1.

<标题>At Last, the Actual Questions

Supposethat??:R3 →R,where??isdefinedby??(??1,??2,??3)≡3??1 ?2??3 +??1(2??2 ?1)+ (??1 +??2 ???3)2 ???4.

  1. (a) ?Show that ?? is a vector quadratic function.
  2. (b) ?Find a critical point ??? for ??.
  3. (c) ?Determine whether ?? has a unique global minimum, or unique global maximum, or neither at ???.

QUESTION 2.

With (of course) suitable explanation, find the second-degree Taylor polynomial (Taylor vector quadratic) for the function f (x) = x3 x2 about the point ?2? . Be systematic.

1 2 ??3??
<标题> (a) [50% of the marks for this question.] Use numerical methods, implemented on a

QUESTION 3.

spreadsheet, to find a critical point of the function
<标题> ??:R2 →R,where??(?? ,?? )≡??????(?3?? )+??????(??? )+5??2??2.

121212

Explain the algebraic aspects of your answer systematically, as well as presenting the numerical calculations neatly: for instance, edited from spreadsheet output.

Hint. See Week 3 Online Skills (Slides), pp. 31 onward. Suitable column headings in your spreadsheet are those that appear on p. 34:

Iter x1 x2 f g1 g2 H11 H12 H21 H22 DET h1 h2

<标题>(DET is the determinant of the Hessian.) Note that it is not necessary to work out full algebraic formulae for the last three columns, since they can all be expressed in terms of the previous columns.

  1. (b) ?[25% of the marks for this question.] Is there a strict local minimum or maximum at the point you have found? Explain.
  2. (c) ?[25% of the marks for this question.] Find at least one other critical point, and determine whether the function has a strict local minimum or strict local maximum there.

    Don’t copy spreadsheet files to each other – it will only end in tears.

發表評論

您的電子郵箱地址不會被公開。 必填項已用*標注

聯系顧問微信, 24小時在線報價

essay代寫是一家覆蓋70+學科的專業代寫公司,我們為您提供100%原創、100%滿意承諾,包括金融、經濟、統計、Marketing、Accounting、Computer Science、MATH 數學、土木工程、生物信息、EE等多個學科的作業代寫服務
Follow Us
聯系我們
Address

<标题>3262 La Jolla Village Dr, La Jolla, CA 92037

WeChat

skygpa

Email

<标题>skygpa@outlook.com

在線客服

售前咨詢
售后咨詢
微信號
Essay_Cheery
微信
英国代写_数学代写_c++/c代写_留学生代写怎么查出来?